

FACULTY OF SCIENCE Charles University

Charles University Center of Advanced Materials (CUCAM)

Opening of the High-Resolution Electron Microscopy Laboratory Jan 14th 2019

MINISTRY OF EDUCATION YOUTH AND SPORTS

Development and Education

Call No. 02_15_003 (ERDF) To support excellent research teams.

Project outputs:

- 1. Building the excellent research team
- 2. Upgrade of the research center infrastructure
- 3. Strengthening the international collaboration

Conditions:

- 1. More than ½ of center members must be new
- 2. Research is headed by established foreign professor
- 3. Team size is limited but not budget

Call No. 02_15_003 (ERDF) To support excellent research teams.

Project outputs:

- 1. Building the excellent research team
- 2. Upgrade of the research center infrastructure
- 3. Strengthening the international collaboration

Conditions:

- 1. More than ½ of center members must be new
- 2. Research is headed by established foreign professor
- 3. Team size is limited but not budget

Excellent conditions – "a dream call"

- Starting date planned for Aug 1st 2016
- Call results not announced yet

Starting in ca 75% operation capacity

- Hiring only 2/3 of new researchers
- Buying just the essential equipment
- Two labs reconstructed

- Starting date planned for Aug 1st 2016
- Call results not announced yet

Starting in ca 75% operation capacity

- Hiring only 2/3 of new researchers
- Buying just the essential equipment
- Two labs reconstructed

Materials synthesis lab

Materials characterization and catalysis lab

CUAM structure:

KFR Prof. Russell E. MorrisER's Prof. Jiří ČejkaProf. Ivan NěmecProf. Petr Nachtigall

6 foreigners *vs.* 10 Czechs/Slovakes 8 below 35 years *vs.* 8 above 35

FACULTY OF SCIENCE Charles University

Large number of public procurements

Building the lab for HRTEM

Examples of equipment purchased: X-ray powder diffractometer Raman spectrometer GC MS and GC machines Adsorption measurement devices Quantum yield spectrometer FTIR spectrometer Computer cluster Ultramicroton Sputter coater Autoclaves, owens

HRTEM

....

Already almost finished: 94%

FACULTY OF SCIENCE

Charles University

Research strategy – Prof. Morris

FACULTY OF SCIENCE Charles University

Research output

In 24 month of full operation + 5 months reduced operation

79 papers, including Nature Chemistry (3), Chem. Soc. Rev. (4), Advanced Materials (4), Angewandte Chemie (2), J. Mater. Chem. A (4) 37 out of 79 at IF > 5; ~50% within international collaboration

Number of publications with increasing IF

FACULTY OF SCIENCE Charles University

Where we are in Jan 2019:

Project outputs:

- 1. Building the excellent research team **DONE.**
- Upgrade of the research center infrastructure
 94% finished (few items planned for later stage)
- Strengthening the international collaboration Twinning H2020 – application filed Nov 2018 H2020-ICT-2018-2020 – application filed Nov 2018 BTHA – running, 2017-2020

PŘÍRODOVĚDECKÁ FAKULTA Univerzita Karlova

Charles University Centre for Advanced Materials

Advanced Materials

- mastering the design, research and development of new and improved materials will remain key for achieving the goals of the European Innovation Policy, in agreement with the European Strategy for a smart, sustainable and inclusive growth (EUROPE 2020).
- All major economies have initiatives in Advanced Materials

Mission

 Our mission is to develop a leading Centre of Excellence in Advanced Materials located at Charles University (CU) in Prague, covering the Design, Synthesis and Application.

Our vision is that creative chemistry completed in CUCAM will be the wellspring from which the next generation of advances in materials technology design will flow.

3Ps strategy

- Prague
 - the environment and facilities making these world-class
- People
 - The young talent in the centre is extremely important our priority is to develop their careers so they are competitive with anyone in Europe
- Promise
 - The potential for top quality science is very much at the forefront of why this group of scientists make an exciting centre

Success

- For a successful Centre the output of the work should be more than the sum of the individual researchers.
- An internationally recognised and trusted centre of scientific excellence
- A Centre that has impact!

HRTEM facility

- Investment in Prague
 - Purchase of new instrumentation
- Investment in People
 - Dr Michal Mazur
 - Research training trips to the UK and Sweden

Science

Theme 1. ADOR routes to 'unfeasible' inorganic and hybrid catalysts

Theme 2. Electronic and Optical Materials Novel modular materials for nonlinear optics. Design and Synthesis of free-standing 2D organic materials.

Theme 3. Multifunctional delivery of multifunctional therapeutic agents

Design and synthesis of materials for storage of multiple therapeutic agents.

Formation of modular mixed-matrix composite materials.

ADOR process

Mazur and coworkers J. Am. Chem. Soc Submitted (2019)

Polymer nanoparticles

Stepanek and coworkers *Soft Matter* 7578-7585 (2018) Stepanek, Mosinger and coworkers *ACS Appl. Mater. Interface* 36229-36238 (2017)

Werner von Siemens prize 2017 for the most significant result in basic research

Discovery of a new method for zeolite synthesis and its application in catalysis

Jiři Čejka awarded €1.9 M ExPro GAČR Grant

Only 5 Expro Grants was given in Czech Republic in chemistry

"ADORable catalysts"

Project based on the design, preparation and application in selective catalysis of novel zeolites synthesised by unconventional approach

PŘÍRODOVĚDECKÁ FAKULTA Univerzita Karlova

Electron Microscopy Laboratory at the Faculty of Science

Electron Microscopy

microbiologyinfo.com

Key steps in Electron Microscopy science

1924: French physicist **Louis de Broglie** (1892–1987) realizes that electron beams have a wavelike nature similar to light. Five years later, he wins the <u>Nobel Prize in Physics</u> for this work.

1931: German scientists Max Knoll (1897–1969) and his pupil Ernst Ruska (1906–1988) build the first experimental TEM in Berlin.

- 1933: Ernst Ruska builds first electron microscope that is more powerful than an optical microscope.
- 1941: Manfred Von Ardenne and Bodo von Borries patent electron scanning microscope (SEM).
- 1981: Binnig and Rohrer detailed images of atoms on the surface of a crystal of gold.
- 1986: Binnig and Rohrer share the Nobel Prize in Physics with the original pioneer of electron microscopes, Ernst Ruska.

2017: **Dubochet, Frank, and Henderson** helped to develop cryo-electron microscopy. The 2017 <u>Nobel Prize in Chemistry</u> has been awarded for work that helps researchers see what biomolecules look like.

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

https://www.explainthatstuff.com/ electronmicroscopes.html

Transmission Electron Microscopy

JEOL JEM NEOARM-200F

Microscope is equipped with:

- Schottky-type Field Emission Gun (30-200 kV voltage)
- Condenser Lens with Cs aberration correction
- CMOS camera (4096 x 4096 pixels, up to 200 fps redout)
- Specimen tilting stage (+/- 35°)
- STEM image acquisition unit
- Phase plate
- Cryo holder for low-temperature measurements
- EDS detector for elementary analysis (Be to U)

JEOL JEM NEOARM-200F

Microscope is able to image:

- Structure of zeolites and zeolitic materials
- Structures in atomic resolution
- Metal-organic frameworks (MOFs) structures
- Carbon nanomaterials
- Polymer nanoparticles
- Self-assembly supremolecular structures (micells, vesicles)

Resolutions:

- HAADF Resolution 0.10nm
- TEM point resolution 0.23nm

Equipment

Ultramicrotome Leica EM UC7

Automatic Plunge Freezer Leica EM GP2

High Vacuum Coater Leica EM ACE600

Zeolites

Porous aluminosilicates

Low electron-beam stability

Adsorbed water decreases stability

Low dose of electrons required

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Mintova et al., Science, 335, 6064, pp. 70-73

ADOR zeolites

The ADOR (Assembly-Disassembly-Organization-Reassembly) process involves the synthesis of 3D germanosilicate during first step. Then, selective disassembly of it to form a layered material followed by organization of layers and reconnection of them to get new zeolite.

The ADOR is a way for the preparation of layered zeolite precursors, that can be further modified to get the **related zeolitic architectures**.

12 new topologies were revealed so far.

M. Mazur et al. J. Chem. Mater. A, 2018

Two recognised Czech Zeolites: PCR and *PCS

Imaging of ADOR zeolites

Atomic resolution images

Nanoscale measurements

M. Mazur, V. Kasneryk, J. Přech, F. Brivio, C. Ochoa-Hernández, A. Mayoral, M. Kubů and J. Čejka, Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.

Rotation Electron Diffraction

IPC-8 sample (novel Czech zeolite)

J. Zhang et al. manuscript in preparation

Rotation Electron Diffraction

Kagomé geometry Cu-MOF

Method for solving the structure (describing atoms positions)

M. Infas H. Mohideen, et al. manuscript submitted

Beam-sensitive materials

MOF UiO-66 crystal

Measurements in cryo conditions makes sample more stable

D. Zhang, Y. Zhu, L. Liu, X. Ying, C.-E. Hsiung, R. Sougrat, K. Li and Y. Han, *Science*, 2018, DOI: 10.1126/science.aao0865

Associating block copolymers

Block copolymers in selective solvents

Cryo-TEM

Thin layer of NP aqueous solution trapped in holey carbon film is fast cooled (105 K/s) to form **vitreous ice**

spherical micelles

vesicles

wormlike micelles

Delisavva, F.; Uchman, M.; Škvarla, J.; Woźniak, E.; Pavlova, E.; Šlouf, M.; Garamus, V.M.; Procházka, K.;Štěpánek, M. *Langmuir* **2016**, *32*, 4059

Uchman, M.; Pispas, S.; Kováčik, L.; Štěpánek, M. *Macromolecules* **2014**, *47*, 7081.

Contact us! Like us! Visit us!

PŘÍRODOVĚDECKÁ FAKULTA Univerzita Karlova

http://cucam.cuni.cz/

@cucam.charlesuniversity

